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Abstract— Hand gestures are a natural component of human-
human communication. Simple hand gestures are intuitive and
can exhibit great lexical variety. It stands to reason that such
a user input mechanism can have many benefits, including
seamless interaction, intuitive control and robustness to physical
constraints and ambient electrical, light and sound interference.
However, while semantic and logical information encoded via
hand gestures is readily decoded by humans, leveraging this
communication channel in human-machine interfaces remains
a challenge. Recent data-driven deep learning approaches are
promising towards uncovering abstract and complex relation-
ships that manual and direct rule-based classification schemes
fail to discover. Such an approach is amenable towards hand
gesture recognition, but requires myriad data which can be
collected physically via user experiments. This process, however,
is onerous and tedious. A streamlined approach with less
overhead is sought. To that end, this work presents a novel
method of synthetic hand gesture dataset generation that
leverages modern gaming engines. Furthermore, preliminary
results indicate that the dataset, despite being synthetic and
requiring no physical data collection, is both accurate and
rich enough to train a real-world hand gesture classifier that
operates in real-time.

I. INTRODUCTION

Hand gestures provide a particularly intuitive interface,
and may complement more commonplace human-machine
interaction modalities (e.g keyboard, touchscreen) thereby
enabling a repertoire of personalized user inputs from fa-
miliar hand motions. Crucially, hand gestures exhibit com-
patibility with existing human-to-human gestures and lack
physical contact constraints, all while being robust to radio
emissions or sound and light pollution. However, reliably
and generally recognizing hand gestures is a difficult task;
obtaining sufficiently descriptive training data is practically
challenging and not well understood. Collection of real-world
training samples requires onerous human effort and often
fails to adequately characterize novel environments and ges-
tures. Additionally, empirical evidence concerning training
data variability and recognition performance with respect to
supervised learning lacks rich optimization knowledge, thus
exacerbating the dataset generation issue.

Most recent advances in gesture recognition involve deep
learning, as model-free approaches have proven more adept
than model-based for solving highly complex tasks. One of
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the major challenges in this technique, however, is that it
requires vast amounts of data for training. This training data
must contain content rich enough to characterize anticipated
variability in real-world implementations. In contrast with
other domains for which large datasets are readily available,
such as computer vision, speech recognition, search engines,
DNA sequencing, and stock market analysis [1] [2], training
models for recognizing gestures is especially difficult due
to the lack of readily available training data. One way to
alleviate this problem is by the process of data augmentation,
which involves synthetically generating dense datasets from
currently available sparse datasets, leading to more effective
training [3].

This paper presents a refined data generation technique
which leverages modern game engines to produce rich and
realistic, purely synthetic and perfectly labeled training data
of human hand gestures. This method affords efficient dataset
generation without the need of human subjects or physical
data collection, and its effectiveness is demonstrated with
the training of a real-time hand gesture classifier. The entire
process consists of two major components, as shown below
in Fig 1, and is described in detail in Section III.
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Fig. 1.  Overall system workflow consists of two separate processes:
(left) creating gesture recognition agent (right) implementing real-time
classification of real-world gestures

A. Contribution

To the best of the authors’ knowledge, this work is the
first to

1) utilize modern game engines to synthetically generate
hand gesture datasets for classifier training.

2) demonstrate gesture classification from purely syn-
thetic data in real-time.

Preliminary results are promising to the use of synthetically
generated geometric datasets for real-time static gesture
recognition. The method is extendable to other surface ge-
ometry based classification tasks.



II. BACKGROUND
A. Related Work

Computer vision approaches are preferred solutions to
gesture recognition due to their ability to track and rec-
ognize static and dynamic gestures without depending on
cumbersome physical hardware to be worn by the user. There
are two broad categories of computer vision approaches:
marker-based gesture recognition and markerless gesture
recognition [4]. Due to minimal hardware requirements and
non-intrusive nature, markerless systems are more widely
researched and implemented. Various approaches involving
markerless recognition have been introduced over the last
decade. These include hand-crafted features such as skin-
color detection [5], shape models and particle filtering [6].
Other groups have also approached gesture tracking with
distinctly colored gloves [7] or a controlled background [8].

Gesture recognition using hand-crafted features have been
successful in niche cases, generally for static gestures. Bo-
nansea et al. [9] utilized ZCam and Support Vector Machines
(SVM) to recognize one-hand gestures. Wang et al. [10]
and Chen et al. [11] used statistical feature-based classifiers
implementing hidden Markov models to classify hand ges-
tures. Other implemented pattern classifiers include principal
component analysis [12], a combination of histogram of
gradient features and SVM [13] [14] and k-nearest neighbors
(k-NN) [15]. However, because of the variability in the types
of acquisition devices, skin color, illumination, background
and minute intrapersonal differences in gesture execution,
hand-crafted feature classification methods require additional
training for each captured image frame of a gesture. This
approach can thus be quite inefficient for real-time imple-
mentation.

Other methods are better suited for real-time performance.
Marcel et al. used a constrained generative model to fit a
probability distribution of a set of hands by incorporating
a non-linear compression neural network and examples of
non-hand images [16]. Molchanov et al. employed spatio-
temporal data augmentation to the VIVA challenge dataset
to avoid overfitting [17]. The authors made use of online
(affine transformations, spatial elastic deformation, fixed-
pattern drop-out and random drop-out) and offline (revers-
ing order and/or mirroring) data augmentation. Two sub-
networks, a high-resolution network and a low-resolution
network, were developed to evaluate the performance of
convolutional neural network classifiers on spatio-temporal
volumes generated by interleaving depth and intensity chan-
nels. The peak accuracy of this method was further shown to
be 74.4%, an improvement from methods relying on hand-
crafted features only.

Additionally, Tsai et al. explored the effects of using
synthetically generated samples to train a neural network
hand classifier [18]. They concluded that adding a relatively
small amount of real-world samples to their training dataset
drastically improved recognition performance, and attributed
this to the fact that the color of their synthetic samples greatly
deviated from those of the real-world. A 37.5% to 77.08%

jump in recognition performance implies dependence of their
methods on inclusion of real-world samples.

These works do not address training data efficiency, and
supporting new gestures requires extensive human effort.

III. EXPERIMENTAL METHODS
A. Gesture Recognition Agent

1) Virtual Gesture Samples: Virtual training dataset cre-
ation starts with the Unreal Engine 4 game engine. Hand
kinematics of a virtual avatar are manipulated to display hand
gestures, as shown in Figure 2, while depth imagery is cap-
tured using Microsoft’s AirSim plug-in [19]. Depth imagery
was utilized since depth samples of synthetic environments
correlate well with real-world counterparts, fitting domain
adaptation well, whereas greater levels of realism with RGB
imagery exhibits large discrepancies [20].

Fig. 2. Virtual avatar displaying representative hand gesture, rendered in
Unreal Engine 4.

A total of five hand gestures were tested, and are labeled
as 1, 2, 3, 4, 5. These names indicate the total number of
outstretched digits within the hand gesture. The task is to
classify real-world data and hand gestures using a classifier
trained solely on synthetic data. Figure 3 depicts both virtual
and real-world samples of the five tested gestures.
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Fig. 3.
(bottom) environments. These samples are taken after the extraction and
background removal phase, which is explained in Section III-B.2

Samples of all five gestures in the real-world (top) and virtual

2) Dataset Augmentation: Variability was injected into
the captured dataset to enhance breadth of the training data.
Captured depth samples of the virtual gestures undergo sev-
eral levels of augmentation including scale (morph), rotation,
and translation. These modifications are applied systemati-
cally and consistently across seed synthetic gestures. The
entire image augmentation pipeline is depicted in Figure 4.



Fig. 4.
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From left to right: (a) scene in the virtual environment, (b) raw depth capture, (c) preprocessing step to remove background and extract hand

(template matching), (d) morphological variation, (e) rotational variation, (f) translational variation.

Additionally, prior to the synthetic data augmentation,
the virtual avatar finger angles are systematically varied
in software. This introduces kinematic variations prior to
depth capture by AirSim. This kinematic variation alters
finger angles with respect to the palm. Constraining factors
prevented unrealistic alterations. In particular, modifications
considered finger overlap in the depth images and limited
the range of angles to 20 degrees. For each gesture, samples
were collected for all configurations with fingers being in one
of three angles (20 degree range, in 10 degree increments).
Samples with excessive overlap were discarded.

Morphological operations enhance size robustness to sam-
ples by expanding or shrinking depth silhouettes. Four sep-
arate morphological operations were performed, one erosion
and three dilations. Operations are skewed towards dilations
to better represent the Kinect’s observed tendency to over-
estimate width of relatively fine objects such as fingers. All
morphological kernels were square in shape, with their edge
lengths being 2, 2, 4, and 6 pixels, respectively.

Additional augmented data were produced through sample
rotation. Specifically, new samples were generated from
each original sample via six rotations about the optical
axis in increments of 5 degrees (generated samples were
rotated versions, -15 to 15 degrees, of the original). Rotation
augmentations were only considered about one degree of
freedom in an effort to reduce experiment complexity, and
since performed morphological variations can account for a
range of rotations about other axes.

Virtual depth samples were also translated within their im-
ages at four levels of alteration. These included translations
with magnitude of 20 pixels in the directions of 45, 135, 225
and 315 degrees.

TABLE I
DATASET SI1ZES

Gesture K  KMRT *T *R *M
1 3 525 105 75 105

2 8 1400 280 200 280

3 9 1575 315 225 315

4 9 1575 315 225 315

5 15 2625 525 375 525
Total 44 7700 1540 1100 1540

Table I summarizes the dataset sizes across gestures and
variations. Variations are abbreviated with K—kinematic, M—
morphological, R-rotation and T-translation. * denotes ex-
clusion of one variation (e.g. rotation ¢ *R).

3) Network Architecture: Tensorflow served as the back-
end for neural network creation and training. Inputs to the
network were grayscale images (64x32), while classification
probability measures for each gesture were generated out-
puts. The overall network structure is illustrated in Figure
5, and considered several techniques to avoid overfitting to
the training dataset. This was crucial since training data
was purely synthetic, while the learnt behavior was used
to classify in a new domain, real-world gestures. These
overfitting avoidance strategies included limiting the depth
of the network, adding batch normalization between layers,
and setting dropout parameters relatively high (0.5) between
layers. Rectified linear activation layers were used for all
layers except the last where softmax was used to format the
output as class-conditional gesture probabilities.

input
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Fig. 5. Extracted and downsized hand gesture depth images underwent
two convolutional layers and two fully connected layers, with the last layer
serving as a softmax classifier.

4) Training: Four distinct gesture recognition agents were
trained using the network structure described in Figure 5.
Each classifier used training datasets across several levels
of sample variation, as shown in Table I. Some noteworthy
specifications about the implemented training process are:

o Training was performed for only 5 epochs with 20% of
the samples comprising the validation set.

« Individual gesture sets were increased in size to match
that of the largest gesture set (gesture 5 in all cases)
by randomly duplicating samples. This step reduced
potential for gesture bias.

e The number of episodes for each network served as
a multiplier for all sets to contain the same number of
samples. As such, *T and *M included 5 episodes while
*R included 7, resulting in 7700 samples per classifier
training set.



o Training was performed with an NVIDIA GeForce GT
640M LE GPU, and never exceeded 2 minutes.

B. System Operation

Primary system components included the Kinect v2 RGB-
Depth camera and the gesture recognition module. These
components utilized ROS to support communication across
multiple platforms, as depicted in Figure 6.

/kinect_depth /depth_images /predicted_gest

Fig. 6. Basic ROS architecture: Kinect publishes raw depth images topic,
to which the gesture recognition module subscribes. The recognition module
then publishes the predicted gesture.

1) Depth Camera: The Kinect v2 time of flight RGB-
Depth camera was the image sensor used in this work. It
captures grayscale depth images at 30 fps with a 512x424
resolution, depth range of 0.5m to ~8m, and a 70x60 degree
FOV. Figure 7 shows a typical raw depth image captured by
the Kinect v2 of gesture 1.

Fig. 7. Typical raw depth image of gesture 1 captured by Kinect v2.

2) Gesture Recognition: Raw depth images from the
Kinect v2 camera were preprocessed in several steps prior
to gesture recognition agent classification or training:

1) Template matching — a template matching procedure
as depicted in Figure 4(c), was used to isolate and
extract the hand from the rest of the scene, resulting
in 142x122 images.

2) Depth threshold filtering — depth readings beyond a
static threshold distance of the extracted hand were
ignored to remove background clutter.

3) Morphological opening — a morphological opening
operation with a square 5x5 kernel reduced specular
noise.

4) Compression — the resulting images were then down-
sized to 64x32 with area-averaging interpolation in
order to reduce moiré patterns.

The third step in the image preprocessing aided in amelio-
rating noise issues exhibited by the Kinect v2. Following

this step, the preprocessed images formed the input for
the gesture recognition agents. The gesture predictions were
published as an array embedded in a ROS topic. Average
latency between image frames captured from the Kinect
v2 sensor and gesture predictions output by the recognition
module were measured at approximately 15ms.

C. Experiment Design

Several data augmentation dimensions (morphology/scale,
rotation and translation) were implemented on the synthetic
dataset and in various combinations. These combinations
formed test conditions for the four gesture recognition
agents, and are named KMRT, *T, *R and *M. The KMRT
dataset contains all forms of data augmentation while the *
datasets contain all but one form, as identified in their name.
Dataset sizes are shown in Table I.

Classifiers trained with the various augmentations were
implemented in real-time (15 ms latency) and evaluated
with real world gestures. Two quantitative measures were
of interest in this experiment:

1) gesture angle — range of tolerable gesture rotation

deviation for robust classification

2) gesture distance — range of tolerable gesture distance
deviation for robust classification

Gesture recognizing networks were separately trained using
the same network architecture. Furthermore, these networks
were trained with datasets consisting of purely virtual hand
gestures generated via the Unreal 4 engine. Again, these
synthetic data were systematically augmented in varying
combinations of augmentation dimensions. Gesture recog-
nition robustness with real-world data was quantified by
the measured limits of deviation in rotation and distance at
which recognition proved accurate — incremental deviations
from center of workspace were performed until the first
failure was observed for that trial. Three different users
with noticeably different hand morphologies participated in
these experiments. Each subject underwent the same data
collection protocol. Specifically, for each gesture type (1-5)
they were instructed to:

1) stand 60 cm away and facing the Kinect v2 sensor with
left hand horizontal (fingers parallel to the ground),
ensure hand is within FOV of the sensor.

2) rotate the gesture making hand clockwise, then
counter-clockwise until failed classification.

3) while varying finger joint angles, translate the gesture
making hand from the center of the workspace towards
the sensor until failed classification — repeat for moving
away from the sensor.

Rotation measurements were limited at 60 degrees in
either direction, the recorded maximum tolerance in rotation.
Distance measurements were constrained to a minimum dis-
tance per Kinect v2 limitations (50cm) and at a maximum by
image preprocessing methods for background noise removal
(69cm). Again, classification failure was determined at the
first instance within the tested variation dimension (rotational
or translational) for which classification was incorrect. Four
networks were tested with each of the three subjects.
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Fig. 8. Classifier robustness to operable angle (top) and distance (bottom) range. Data points are the mean reported failure limits of rotation and translated

distance amongst the three subjects.

The four networks, KMRT, *T, *R and *M, were trained
using synthetic datasets with different combinations of aug-
mentation. Results from this user study help to assess the
relative impact of each of these augmentation dimensions
with regard to building robust learned behavior from syn-
thetic hand gesture training data for real-world classification.

IV. RESULTS

Two main quantitative metrics were evaluated. Classifier
performance with respect to hand gesture angle and distance
range are summarized in Figure 8 and Tables II and III.

TABLE II
GESTURE AVERAGE RANGES

Gesture | KMRT *T *R *M
| ang 100 38 40 95
dist 13 15 19 19
5 ang 70 24 31 24
dist 14 16 13 8
3 ang 16 20 40 16
dist 3 11 13 4
4 ang 75 60 40 50
dist 13 10 11 12
5 ang 115 8 105 85
dist 19 15 19 19

For rotation, subjects rotated the hand gesture clockwise
at the center of the workspace until the first failed classi-
fication was observed. This was then repeated for counter-
clockwise rotation. For distance, subjects translated the hand
gesture towards the Kinect v2 sensor from the center of the
workspace until the first failed classification was observed.
This was then repeated for translation away from the sensor.

V. DISCUSSION

In terms of robustness to rotational variation, the KMRT
classifier performed the best overall, displaying particularly

TABLE III
SUMMARY OF RESULTS: AVERAGE RANGE FOR ALL GESTURES

Measure KMRT *T *R *M

Range (deg) 75.2 45.4 51.2 54.0

Angle Erect (%) - 396 -320 -282
Distance Range (cm) 13.0 134 15.0 124
Effect (%) - +3.1  +154 -4.6

good performance with gesture ‘2°. All networks struggled
with gesture ‘3. It is also worth noting that the *R classifier,
the network lacking rotational variation within the training
dataset, does not show significantly poorer rotational robust-
ness compared to that of the other networks. For robustness
to translational distance variation, gesture ‘3’ proved again
to be most difficult to classify. Interestingly, the *T and *R
networks exhibit improved performance over the KMRT.
Generally, gestures 2, 3, and 4 were more difficult to
classify, as illustrated by Figure 8. This is a somewhat
anticipated result due to their geometric similarity with one
another. Additionally, kinematic and morphological dilations
during sample augmentation occasionally resulted in samples
with non-distinct fingers. Such samples were left in the
datasets in an effort to replicate observed noise exhibited by
the Kinect v2 sensor. Images captures by the Kinect v2 was
also prone to exhibit non-distinct fingers, generally caused
by uniform expansion of thin/fine objects. Unfortunately,
the recognition agent was unable to robustly characterize
combined fingers as two or more separate fingers physically
grouped together. Further analysis on the effects of size/digit
thickness variation on the synthetic dataset may provide a
solution to alleviate the combined finger issue.
Translational variation was included in the sample aug-
mentation pipeline to help account for real-world sample
variance in gesture location within the image. Such variations



can occur from potential noise or alignment differences
during template matching in gesture extraction. A similar
template matching technique was used with the virtual en-
vironment samples to extract gestures, but locating the palm
(matched template) in the noise-free environment performed
more consistently as compared to the same real-world task.
As the results demonstrate in Table III, inclusion of transla-
tional variation in the synthetic training set aided in gesture
recognition. Increasing translational variation may lead to
improved performance with template matching and other
imperfect object detection methodologies.

Furthermore, Table III illustrates the importance of trans-
lational variation in the synthetic data generation. Morpho-
logical and rotation variation may also assist in improving
angle robustness for gesture classification. As expected, the
lack of morphological variation slightly degraded recognition
of gestures at different ranges. Surprisingly, results suggest
that rotation variation may inhibit robustness to varying
distances. This can be attributed to the fact that subjects used
the canonical (non-rotated) hand gesture during translational
distance testing procedures.

Noticeable morphological differences between virtual and
real-world gestures, as demonstrated in Figure 3, illustrate
the utility of the proposed methods. Hand gesture recognition
was achieved in this work despite lacking accurate modeling
of hand kinematics and zero physical dataset collection. The
neural networks trained with entirely synthetic data were able
to classify hand gestures demonstrated by real human users
exhibiting different hand characteristics and morphologies.
Stark inter-subject contrast in palm and finger shape, as well
as variation in placement of non-displayed fingers are a few
hurdles that the supervised learned classification overcame.
The method was also robust to the previously described
limitations of using the Kinect v2 sensor. Finally, classifiers
were trained in a time-efficient manner (2 minutes maximum)
using a commodity graphics processing unit.

VI. CONCLUSION

In this work, we proposed a method for real-time convo-
lutional neural network classification of static gesture recog-
nition that transcends the virtual and real worlds. Distinctly,
the classifier was trained on entirely synthetic samples that
underwent a novel data augmentation pipeline for building
robust training datasets. Testing network classification perfor-
mance with separate training dataset variations (kinematic,
morphological, rotation, translation) characterized the effi-
cacy of the proposed methods and also provided insights
for improving performance of learnt behavior derived from
synthetic data. These results have implications with regard
to using purely synthetic data to train real-world classifiers
in other application domains.

A. Future Work

The results from this support several future research direc-
tions. Further exploration and optimization of sample vari-
ability can lead to increased recognition robustness for static
gestures, while integrating recurrent neural networks (RNN)

and virtual environment animations can expand recognition
to dynamic gestures as well. Separately, focus can be given
to the personalization of gestures and quantifying the process
of adding unique gestures to the classification suite.
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